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Coupled Layerwise Theories for Hybrid and Sand-

wich Piezoelectric Beams 
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Abstract— This paper presents review of the available one dimensional (1D) models of hybrid and sandwich beams and highlights the need of 
computationally efficient and accurate electromechanical coupled 1D beam models. The paper covers the discussion of uncoupled equivalent single layer 
theories, coupled equivalent single layer theories, layerwise theories, efficeint layerwise theories, 3D theories,  efficient coupled zigzag theories, finite 
element models, exact piezoelasticity solution and coupled third order smeared beam models. 

Index Terms— electromechancal loads, finite element, hybrid beams, laminate theories, piezoelectric, sandwich beams, zigzag models 

——————————      —————————— 

1 INTRODUCTION                                                            

OMPOSITE laminates and sandwich structures with some em-
bedded or surface bonded piezoelectric layers form part of a 
new generation of smart adaptive structures which have re-

ceived enormous research attention in recent years. The sensing and 
actuation capability of piezoelectric layer is used for achieving active 
vibration control, shape control, noise control, health monitoring etc. 
Sandwich structures have high ratio of flexural stiffness to weight 
ratio resulting in lower deflection, higher buckling load and higher 
natural frequencies compared to other configuration of this type of 
structures. Sandwich structures offer advantage of placement of elec-
trodes for the piezoelectric layers. Due to inhomogeneity in the me-
chanical properties across the thickness and presence of electric het-
erogeneity caused by the embedded piezoelectric layers, these struc-
tures can be analysed accurately and efficiently by coupled electro-
mechanical three dimensional (3D), two dimensional (2D) and one 
dimensional (1D) models for solids, plates and shells, and beams, 
respectively. 

The relevant literature is reviewed from the view point of this ob-
jective. Beginning with the pioneering book by Tiersten [1] on pie-
zoelectric plate vibration, several books [2], [3] have been written on 
piezoelectric and smart structures. Several articles [4], [5] have sur-
veyed on the research of hybrid composite and sandwich piezoelec-
tric structures. 

2 CLASSIFICATION OF THEORIES 
The majority of the reported piezoelectric laminate theories fall into 
following categories. Their points of differentiation are based on 
assumed displacement field and the exclusion or inclusion of the 
piezoelectric coupling by independent electric potential variables. 
 
2.1 Uncoupled Equivalent Single Layer Theories 
In single layer beam or shell, the displacement field is assumed to 
have the same functional dependence on the thickness coordinate z 
for all layers.  The deflection w is usually assumed to be independent 
of z.  The electric potential is not included as an independent state 

variable and the piezoelectric coupling is neglected. The electric 
potential across each actuated piezoelectric layer is assumed to vary 
linearly across the thickness and induces piezoelectric strains. The 
electric field in the sensory layer can be back calculated from the 
mechanical strains using constitutive equations. Many reported theo-
ries belong to this class. In the classical laminate theory (CLT), the 
transverse shear and normal strains are neglected and so the axial 
displacement u and deflection w are approximated as 

 
 
 
 

 
In the first order shear deformation theory (FSDT), uniform trans-
verse shear strain across the thickness is assumed and so the dis-
placements are approximated in terms of three displacement varia-
bles u0, ψ0, and w0 as:  

 
 
 

 
Since the actual shear strain distribution is not uniform, a shear cor-
rection factor is introduced to enhance this. No shear correction fac-
tor is required in higher order theories in which shear deformation is 
nonuniform across the thickness with u being a function of z of de-
gree higher than in FSDT. In third order theory, u is taken as cubic in 
z such that the shear strain γzx is zero at the top and bottom of the 
beam of thickness h and displacement field is expressed in terms of 
u0, ψ0, w0 as: 

 
 
 
 
 

2.2 Coupled Equivalent Single Layer Theories 
The displacement field is assumed to have the same functional de-
pendence on z for all layers and electric potentials are treated as in-
dependent state variables with layerwise approximation of electric 
potential φ across the thickness. Usually w is assumed to be inde-
pendent of z and φ is assumed to be layerwise linear. The piezoelec-
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tric coupling is explicitly considered through direct and converse 
piezoelectric effects. Coupled CLT, coupled FSDT and coupled third 
order theory belong to this class.  

2.3 Layerwise Theories  
The axial displacement field is approximated across the thickness, 
layerwise or sublaminate (a set of layers) wise with continuity at 
each interface, and w is usually assumed to be independent of z. In 
the uncoupled layerwise theories, the electric potentials are not inde-
pendent state variables.  In the coupled layerwise theories, the elec-
tric potentials are independent state variables and φ is approximated 
across the thickness layerwise, sublayerwise or sublaminate (a set of 
layers) wise, and u and φ are usually assumed piecewise linear across 
the thickness.  These theories attempt to reproduce the performance 
of 3D theories with less analytical complexity and computational 
effort and yield accurate values of intralaminar stresses and interlam-
inar shear stresses for thin and thick piezoelectric laminates and can 
handle arbitrary electrical configurations. Consequently, they offer 
analytical flexibility and robustness at an increased computatinal 
effort since the number of primary displacement variables depends 
on the number of layers. The computational cost is almost one order 
more than that of equivalent single layer theories. The shear stress τzx 
computed from constitutive equations, for theories in categories 
1,2,3 is generally not continuous at the layer interfaces.  
 

2.4 Efficient Layerwise Theories  
The assumptions of displacement and electric potential fields are the 
same as in layerwise theories above with additional quadratic and 
cubic global dependence of u on z. The number of primary displace-
ment variables is reduced to three by enforcing the shear traction free 
conditions at top and bottom and the conditions of continuty of τzx at 
the layer interfaces. These theories are computationally efficient as  
the number of primary displacement variables is only three and this 
does not depend on the number of layers. In the theories described in 
categories 2.1 to 2.4, τzx and σx predicted from constitutive equations 
can be improved upon (corrected) by integrating the equations of 
motion of 3D elasticity. 
 

2.5 3D Theories  
The 3D theories are based on assumed 3D expansions for all dis-
placement components and electric potential which are made layer-
wise, sublayerwise or sublaminate wise. The 3D constitutive equa-
tions of a piezoelectric continuum and equations of motion and 
charge balance are used in the differential form or in the weak inte-
gral form.  These theories directly yield interlaminar normal strain 
and stresses using the constitutive equations. Most importantly, these 
theories include the effect of the d33 piezoelectric coefficient which is 
neglected by most previous categories. The 3D constitutive equations 
of a piezoelectric orthotropic material of class mm2 symmetry, with 
principal material axes x1, x2, x3 and polarised along direction x3, 
with stress σ, engineering strain ϵ, electric field E and electric dis-
placement D with respect to the principal material axes, are given by 
 
 
 
 
 

where the superscript T denotes matrix transpose and θ is the tem-
perature rise above the stress-free reference temperature and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

2.6 Exact Piezothermoelasticity Solutions   
These are exact solutions of the partial differential equations of equi-
librium or motion and electric displacement conservation through the 
laminate thickness and exactly satisfy the continuity conditions at the 
layer interfaces and the boundary conditions at the boundary. These 
are exact 3D solutions for a laminated piezoelectricplate or shell, and 
exact 2D solutions for plane strain problem of cylindrical bending of 
a flat or curved panel or assumed generalised plane stress problem of 
a beam of small width.  These solutions do not involve any approxi-
mations. Such solutions exist only for few specific geometric config-
urations, electromechanical boundary conditions and loadings. These 
are mostly used as benchmark tests for assessing other theories of 
laminates. Naturally, some of the reported formulations may not 
clearly fall in one of the above categories.  

2.7 Coupled Zigzag Models   
An efficient new coupled 1D theory was developed for piezoelec-

tric hybrid  beams under electromechanical static and dynamic load 
by extending the theory [31] for static analysis to a theory for any 
layup including piezoelectric layers of different materials [36], [37]. 
The model combines third order zigzag approximation for the dis-
placement with layerwise approximation of the electric potential 
field as piecewise linear for sublayers. The transverse displacement 
is approximated to account for the piezoelectric transverse normal 
strain induced by the electric potential. By enforcing approximately 
(by neglecting the explicit contribution of φ to τzx the conditions of 
zero transverse shear stress at the top and bottom and its continuity at 

.3

0

0



















q

q

193

IJSER



International Journal of Scientific & Engineering Research Volume 4, Issue 5, May-2013                                                                                  
ISSN 2229-5518 

IJSER © 2013 

http://www.ijser.org 

layer interfaces, the displacement field is expressed in terms of three 
primary displacement variables and potentials. This layerwise theory 
for displacement and potential fields thus preserves the computation-
al advantage of an equivalent single layer (ESL) theory. The govern-
ing coupled equations of motion and charge balance and variational-
ly consistent boundary conditions are derived from Hamilton's prin-
ciple. Analytical Fourier series solutions are obtained, for static re-
sponse, natural frequencies and forced response under harmonic 
load, for simply supported hybrid beams.  

The theory is assessed by comparison of the results with the exact 
2D piezoelastic solution and uncoupled FSDT solution. The present 
results are generally much more accurate than the FSDT solution and 
agree well with the exact solution for thin and moderately thick hy-
brid beams. The capability of the developed theory to adequately 
model open and closed circuit electric boundary conditions to accu-
rately predict their influence on the response is demonstrated. The 
effects of ratio of span-to-thickness and ratio of piezolayer thickness 
to beam thickness on the response are investigated.  

Another efficient new coupled 1D zigzag theory [38] was devel-
oped for static and dynamic analysis of hybrid beams under thermoe-
lectromechanical loads, by extending the above zigzag model by 
including the explicit contribution of electric potential φ and temper-
ature ϴ in the conditions imposed on τzx. The axial displacement is 
approximated as a combination of global third order variation across 
the thickness with additional layerwise piecewise linear variation. 
The thermal and potential fields are approximated sublayer-wise as 
piecewise linear.  The model considers both the axial and transverse 
electric fields. The deflection field is approximated to account for the 
transverse normal strain induced due to the piezoelectric d33 coeffi-
cient and the thermal expansion coefficient α3. The displacement 
field is expressed in terms of only three primary displacement varia-
bles, electric potential variables and thermal field by satisfying ex-
actly the conditions of zero transverse shear stress at the top and 
bottom and its continuity at layer interfaces. The governing coupled 
dynamic equations of stress and charge and variationally consistent 
boundary conditions are derived using Hamilton's principle.  

The developed theory can accurately model open and closed cir-
cuit boundary conditions. The number of primary displacement un-
knowns is three, which is independent of the number of layers and 
equal in number to the ones used in the FSDT. This layerwise theory 
for displacement and potential fields thus preserves the computation-
al advantage of an equivalent single layer (ESL) theory. Analytical 
Fourier series solutions are obtained for simply supported hybrid 
beams, for static response under electrothermomechanical load, natu-
ral frequencies of free vibrations and steady state undamped and 
damped forced response under harmonic load. 

3 VARIOUS BEAM MODELS 

A review of 3D continuum-based approaches, 2D theories for plates 
and shells and 1D theories for beams, along with their comparative 
study for plates under static loading, is presented by Saravanos and 
Heyliger [4]. In these papers, analytical 3D solutions are available 
only for some specific shapes and boundary conditions [6], [7] such 
as simply-supported infinite flat panels. The 3D finite element analy-
sis for piezoelectric plates [8], [9] and 2D finite elements for beams 
result in large problem size which may become computationally 
costly for practical dynamics and control problems. Hence efficient 
accurate electrothermomechanical coupled 2D plate and 1D beam 

theories are required without too much loss of accuracy compared to 
3D models. 
Control of beam vibration using piezoelectric materials vibration was 
demonstrated by early researchers [10], [11]. 

Several beam theories of varying accuracy have been developed. 
Early works used elastic beam models [12], [13] with effective forc-
es and moments due to induced strain of piezoelectric actuators. Fi-
nite element formulations were also presented [14], [15]. A discrete 
layer theory with layerwise approximation of displacements was 
developed for elastic laminated beams with induced actuation strain 
by Robins and Reddy [16]. Classical laminate theory (CLT) [17], 
[18] first order shear deformation theory (FSDT) [18], [19] and the 
refined third order theory (TOT) [20, 21] based on Reddy's theory 
[22], have been applied without electromechanical coupling to hy-
brid beams and plates. No shear correction factor is needed in third 
order theories.  

Coupled CLT, FSDT [23], [24] and TOT [25], [26] for hybrid 
beams and plates including the charge equation of electrostatics and 
electromechanical coupling have been reported with layerwise linear 
approximation for the potential field. In these third order theories, 
the transverse shear strain γzx is zero at the top and bottom of the 
beam, but the shear traction free conditions at the top and bottom of 
the beam are not exactly satisfied. Saravanos and Heyliger [27] have 
presented coupled discrete layer theory (DLT), using layerwise ap-
proximation for displacements and electric potential, which yields 
accurate results for thin and thick beams.  But it is expensive for 
practical problems since the number of displacement unknowns de-
pend on the number of sublayers.  Carrera [28] has presented a cou-
pled DLT for plates with layerwise linear zig-zag approximation for 
axial displacement and quadratic one for transverse shear stresses 
and potential. But the axial electric field is neglected and the consti-
tutive equation for shear stresses is only approximately satisfied. 
Several of these theories have been applied in the above works and 
in [29], [30] for control of vibration of hybrid beams with piezoelec-
tric layers by active or passive damping strategy and also by hybrid 
active-passive intelligent constrained layer damping treatments. 

Except for the coupled DLT [27], in which the transverse dis-
placement is also taken as piecewise linear, no other 2D theory dis-
cussed above considers the piezoelectric transverse normal strain 
induced due to piezoelectricity through d33 coefficient, which has 
been observed to have considerable effect on the response, especially 
for electrical load [4]. To overcome the disadvantage of large number 
of displacement unknowns, dependent on the number of layers, in 
the DLT of Ref.[27], Kapuria [31] has recently developed a novel 
efficient coupled layerwise theory (DLT), for static analysis of hy-
brid beams, using a third order zigzag approximation for the axial 
displacement [32-34] with a sublayerwise piecewise linear approxi-
mation for the potential φ. The transverse displacement is approxi-
mated to account for the piezoelectric transverse normal strain in-
duced by the electric potential through the piezoelectric strain con-
stant d33. The model considers both the axial and transverse electric 
fields. By neglecting the explicit contribution of φ, the conditions of 
zero transverse shear stress τzx at the top and bottom surfaces and the 
conditions of continuity of τzx at layer interfaces are enforced to for-
mulate the theory in terms of only three displacement unknowns, 
which are independent of the number of layers and equal in number 
to the ones used in the FSDT. This DLT has the computational ad-
vantage of an equivalent single layer (ESL) theory and yet yields 
accurate through-the-thickness variations of displacements, electric 
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field and stresses. Vidoli and Batra [35] have recently derived plate 
and rod equations for piezoelectric body from a mixed three dimen-
sional variational principle. 

4 CONCLUSION 
A review is presented for different computational models for 

smart beams. Special emphasis is laid upon the development of dif-
ferent theories related to smart beams. Due to the inhomogeneity in 
the mechanical properties across the thickness and the presence of 
electric heterogeneity caused by the piezoelectric layer, the classical 
and first order shear deformation theories are inadequate for the 
analysis of thick and moderately thick beams and so third order and 
several higher order theories have been developed. This paper re-
views different theories with latest development for smart beams 
starting with elastic beam models. Several beam theories of varying 
accuracy have been developed. Early works used elastic beam mod-
els with effective forces and moments due to the induced strain of 
the piezoelectric actuators. Finite element formulations were also 
presented.  
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